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Abstract— counting bloom filters (CBFs) are used to improve 
upon the energy, delay, and complexity of various processor 
structures. CBFs improve the energy and speed of 
membership tests by maintaining an imprecise and compact 
representation of a large set to be searched. This studies the 
energy, delay, and area characteristics of two implementations 
for CBFs using full custom layouts in a commercial 0.13- m 
fabrication technology. One implementation, S-CBF, uses an 
SRAM array of counts and a shared up/down counter. Our 
proposed implementation, L-CBF, utilizes an array of 
up/down linear feedback shift registers and local zero 
detectors. Circuit simulations show that for a 1 K-entry CBF 
with a 15-bit count per entry, L-CBF compared to S-CBF is 
3.7 or 1.6 faster and requires 2.3 or 1.4 less energy depending 
on the operation. Additionally, this presents analytical energy 
and delay models for L-CBF. Our results demonstrate that for 
a variety of L-CBF organizations, the estimations by 
analytical models are within 5% and 10% of Spectre 
simulation results for delay and energy, respectively. 
 
                             INTRODUCTION 
Many architectural techniques have relied on hardware 
counting bloom filters (CBFs) to improve upon the power, 
delay, and complexity of various processor structures. For 
example, CBFs have been used to improve performance 
and power in snoop coherent multiprocessor or multi-core 
systems. CBFs have been also utilized to improve the 
scalability of load/store scheduling queues and to reduce 
instruction replays by assisting in early miss determination 
at the L1 data cache. In these applications, CBFs help 
eliminate broadcasts over the interconnection network in 
multiprocessor systems, CBFs also help reduce accesses to 
much larger and thus much slower and power-hungry 
content addressable memories, or cache tag arrays. In all 
above mentioned hardware applications, CBFs improve the 
energy and speed of membership tests. Checking whether a 
memory block is currently cached is an example of a 
membership test in processors.  
The CBF provides a definite answer for behavior determine 
how many membership tests can be serviced by the CBF. 
The second factor is the energy and delay characteristics of 
the CBF. The more membership tests are serviced by the 
CBF “alone” and the more speed and energy efficient the 
CBF implementation is, the higher the benefits. If the key 
distribution is not known, or too complicated to yield to 
analysis, then the use of a particular hash function may 
have adverse effects: it may magnify correlations among 
keys and fill the hash table non-uniformly. In universal 
hashing, one of several hash functions is chosen at random. 
Here, we see a different technique in Bloom filters, several 
hash functions are applied to each key. Again, this allows 
us to use simple hash functions while at the same time 
minimizing the effects of any particular hash function. 
The main purpose of Bloom filters is to build a space data 
structure for set membership. Indeed, to maximize space 

efficiency, correctness is sacrificed: if a given key is not in 
the set, then a Bloom filter may give the wrong answer (this 
is called a false positive), but the probability of such a 
wrong answer can be made small. A typical application of 
Bloom filters is web caching. An ISP may keep several 
levels of carefully located caches to speed up the loading of 
commonly viewed web pages, in particular for large data 
objects, such as images and videos. If a client requests a 
particular URL, then the service needs to determine quickly 
if the requested page is in one of its caches. False positives, 
while undesirable, are acceptable: if it turns out that a page 
thought to be in a cache is not there, it will be loaded from 
its native URL, and the penalty is not much worse than not 
having the cache in the first place. 
The significant contributions of this work are as follows. 1) 
It proposes L-CBF, a novel, energy and speed efficient 
implementation for CBFs. 2) It compares the energy, delay 
and area of two CBF implementations, L-CBF and S-CBF 
using their circuit level implementations and full-custom 
layouts in 0.13-m fabrication technology. 3) It presents 
analytical delay and energy models for L-CBF and 
compares the model estimations against simulation results. 
 
                                         CBFs 
This section reviews CBFs and their characteristics. 
Additionally, it discusses the previously assumed 
implementation for the CBFs, which has not been 
investigated at the physical level. 
Introduction to CBFs: 

 
Figure 1: CBF as black box. 

1) CBF as a Black Box: As shown in Fig. 1, a CBF is 
conceptually an array of counts indexed via a hash function 
of the element under membership test. A CBF has three 
operations:1) increment count (INC); 2) decrement count 
(DEC); and 3) test if the count is zero (PROBE). The first 
two operations increment or decrement the corresponding 
count by one, and the third one checks if the count is zero 
and returns true or false(single-bit output). We will refer to 
the first two operations as updates and to the third one as a 
probe. A CBF is characterized by its number of entries and 
the width of the count per entry. 
2) CBF Characteristics: Membership tests using CBFs are 
performed by probe operations. In response to a 
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membership test, a CBF provides one of the following two 
answers: 1) “definite no,” indicating that the element is 
definitely not a member of the large set and 2) “I don’t 
know,” implying that the CBF cannot assist in a 
membership test, and the large set must be searched. The 
CBF is capable of producing the desired answer to a 
membership test much faster and saves power on two 
conditions. First, accessing the CBF is significantly faster 
and requires much less energy than accessing the large set. 
Second, most membership tests are serviced by the CBF. 
Ideally, in the CBF, a separate entry would exist for every 
element of the set. In this case, the CBF would be capable 
of precisely representing any set. However, this would 
require a prohibitively large array negating any benefits. In 
practice, the CBF is a small array and the element 
addresses are hashed onto  this small array. Because of 
hashing, multiple addresses may map onto the same array 
entry. Hence, the CBF constitutes an imprecise 
representation of the content of the large set and keeps a 
superset of the existing elements. This impreciseness is the 
reason of the “I don’t know” answers by the CBF. To 
reduce the frequency of such answers, and hence improving 
accuracy, multiple CBFs with different hash functions can 
be used.An “I don’t know” answer to a membership test 
incurs power and delay penalty since in case of such an 
answer, the large set must be checked in addition to the 
CBF. The delay penalty occurs if the CBF and the large set 
accesses are serialized. This delay penalty can be avoided if 
we probe the CBF and the large set in parallel; in this case, 
power benefits will be possible only if the in-progress 
access to the large set can be terminated once the CBF 
provides a definite answer. These overheads do not concern 
us as often CBF can provide the definite answer.  
3) CBF Functionality: The CBF operates as follows. 
Initially all counts are set to zero and the large set is empty. 
When an element is inserted into, or deleted from the large 
set, the corresponding CBF count is incremented or 
decremented by one. To test whether an element currently 
exists in the large set, the corresponding CBF count is 
inspected. If the count is zero, the element is definitely not 
in the large set;  
B. S-CBF: SRAM-Based CBF Implementation  
Previous work assumes a CBF implementation consisting 
of an SRAM array of counts, a shared up/down counter, a 
zero comparator, and a small controller.  

 
            Figure2: Architecture of S-CBF 

The architecture of S-CBF is depicted in Fig. 2. Updates 
are implemented as read-modify-write sequences as 
follows: 1) the count is read from the SRAM; 2) itis 
adjusted using the counter; and 3) it is written back to the 
SRAM. The probe operation is implemented as a read from 
the SRAM, and a compare with zero using the zero-
comparator. A small controller coordinates this sequence of 
actions. An optimization was proposed to speed up probe 
operations and to reduce their power. Specifically, an extra 
bit Z is added to each count. When the count is nonzero the 
Z is set to false and when the count is zero, the Z is set to 
true. Probes can now simply inspect Z . The Z bits can be 
implemented as a separate SRAM structure which is faster 
and requires much less power. This type of optimization is 
compatible with both S-CBF and L-CBF architectures 
 

L-CBF: LFSR-BASED CBF IMPLEMENTATION 
More energy in S-CBF is consumed on the SRAM’s 
bitlines and wordlines. Additionally, in S-CBF, both delay 
and energy suffer as updates require two SRAM accesses 
per operation. The shared counter may increase the energy 
and the delay further. We could avoid accesses over long 
bitlines by building an array of up/down counters with local 
zero detectors. In this way, CBF operations would be 
localized and there would be no needto read/write values 
over long bitlines. L-CBF is such a design. For the CBF, 
the actual count values are not important and we only care 
whether a count is “zero” or “nonzero.” Hence, any counter 
that provides a deterministic up/down sequence can be a 
choice of counter for the CBF. L-CBF consists of an array 
of up/down LFSRs with embedded zero detectors. L-CBF 
employs up/down LFSRs that offer a better delay, power, 
and complexity tradeoff than other synchronous up/down 
counters with the same count sequence length. L-CBF 
significantly reduces energy and delay compared to S-CBF 
at the cost of more area. The increase in area though is a 
minor concern in modern processor designs given the 
abundance of on-chip resources and the very small area of 
the CBF compared to most other processor structures. 
 
A. LFSRs A maximum-length -bit LFSR sequences 
through states. It goes through all possible code 
permutations except one. The LFSR consists of a shift 
register and a few embedded XNOR gates fed by a 
feedback loop. Each LFSR has the following defining 
parameters: 
 
• width, or size, of the LFSR (it is equal to the number of 
bitsin the shift register); 
• number and positions of taps (taps are special locations in 
the LFSR that have a connection with the feedback loop); 
• initial state of the LFSR which can be any value  except 
one (all ones for XNOR feedback). 
 
State transitions proceed as follows. The non-tapped  bits 
are shifted from the previous position. The tapped bits are 
XNORed with the feedback loop before being shifted to the 
next position. The combination of the taps and their 
locations can be represented by a polynomial. Fig. 3 shows 
an 8-bit maximum-length Galois LFSR, its taps, and 
polynomial. 
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Figure : Eight bit maximum length LFSR. 

By appropriately selecting the tap locations it is always 
possible to build a maximum-length LFSR of any width 
with either two or four taps. Additionally, ignoring wire 
length delays and the fan-out of the feedback path, the 
delays of the maximum length LFSR is independent of its 
width (size). Delay increases only slightly with size, 
primarily due to increased capacitance on the control lines. 

 
Figure : Three-bit maximum-length up/down LFSR. 

 
1) Up/Down LFSRs: The tap locations for a 
maximum- length, unidirectional -bit LFSR can be 
represented by a primitive polynomial g(x). 
g(x)=∑CiX

i   (C0 = Cn =1) 
in the above equation Xi corresponds to the output of  the 
bit of the shift register and the constants are either  0 (no 
tap) or 1 (tap). Given , a primitive polynomial  for an LFSR 
generates the reverse sequence as 
h(x)=∑ Ci X

n-i    (C0 = Cn =1) 
The superposition of the two LFSRs (the original and its 
reverse) forms a reversible “up/down” LFSR. The up/down 
LFSR consists of a shift register similar to the one used for 
the unidirectional LFSR; a 2-to-1 multiplexer per bit to 
control the shift direction; and twice as many XNOR gates 
as the unidirectional LFSR. Fig. 4 shows the construction 
of a 3-bit maximum-length up/down LFSR. It also depicts 
the polynomials and count sequence of both up and down 
directions. In general, it is possible to construct a 
maximum-length up/down LFSR of any width with two or 
six XNOR gates (i.e., four or eight taps). 
2) Comparison With Other Up/Down Counters: In this 
section, we compare LFSR counters with other 
synchronous up/down counters that could be a choice of 
counter for CBFs. We restrict our discussion to 
synchronous up/down counters of width n with a count 
sequence of at least 2n-1states.The simplest type of 
synchronous counter is the binary modulo-2n n-bit counter. 
For this counter, speed and area are conflicting qualities 
due to carry propagation. In applications where the count 
sequence is unimportant [e.g., pointers of circular first-
inputs–first-outputs (FIFOs) and frequency dividers], an 
LFSR counter offers aspeed-power-area efficient solution. 
The delay of an LFSR is nearly independent of its size. 

Specifically, the LFSR delay consists of a flip-flop delay, 
an XNOR gate delay, and a feedback loop delay. The 
feedback loop delay is the propagation delay of the last 
flip-flop output to the input of the furthest XNOR gate from 
the last flip-flop. Ignoring secondary effects on the 
feedback path, the delay of an n-bit maximum length LFSR 
is O(1) and independent of the counter size. These 
characteristics make LFSRs a suitable counter choice for 
CBFs. 

 
Fig. 5.  Architecture of L-CBF; the basic cells of an 

up/down 

 
(a) Two-phase flip-flop; 

 

 
(b) 2-to-1 multiplexer; 

 

 
(c) XNOR gate; 
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(d) a bit-slice of the  embedded zero detector 

 
A.L-CBF Implementation 
Fig. 5 depicts the high-level organization of L-CBF. L-CBF 
includes a hierarchical decoder and a hierarchical output 
multiplexer. The core of the design is an array of up/down 
LFSRs and zero detectors. The L-CBF design is divided 
into several partitions where each row of a partition 
consists of an up/down LFSR and a zero detector. L-CBF 
accepts three inputs and produces a single-bit output is-
zero. The input operation select specifies the type of 
operation: INC, DEC, PROBE, and IDLE. The input 
address specifies the address in question and the input reset 
is used to initialize all LFSRs to the zero state. The LFSRs 
utilize two non-overlapping phase clocks generated 
internally from an external clock. We use a hierarchical 
decoder for decoding the address to minimize the energy-
delay product. The decoder consists of a pre decoding 
stage, a global decoder to select the appropriate partition, 
and a set of local decoders, one per partition. Each partition 
has a shared local is-zero output. A hierarchical multiplexer 
collects the local is-zero signals and provides the single-bit 
is-zero output. Fig. 5 also depicts the basic cells of each 
up/down LFSR and zero decoder. Shown are the flip-flop 
used in the shift registers, the multiplexer that controls the 
direction of change (“up”/”down”), the XNOR gate, and a 
bit-slice of the zero decoder. 
 

EXPERIMENTAL RESULTS 
This section compares the energy, delay, and area of S-
CBF and L-CBF. Moreover, this section compares the 
analytical model estimations against simulation results for 
L-CBF. We compare S-CBF and L-CBF on a per operation 
basis. Both designs are implemented using the Cadence(R) 
tool set in a commercial 0.13- m fabrication technology. 
We developed a transistor-level implementation and a full-
custom layout for both designs that were optimized for the 
energy-delay product. We employed Spectre for circuit 
simulations. This is a vendor recommended simulator for 
design validation prior to manufacturing. The rest of this 
section is organized as follows. We initially consider a 1 K-
entry CBF with 15-bit counts as this configuration is 
representative of the CBFs used in previous proposals. 
Then, we present results for other CBF configurations. 
Delay and Energy Per Operation 
We compare implementations of a 1 K-entry, 15-bit count 
per entry CBF. For S-CBF, an SRAM with a total capacity 
of 15 Kbits is used. The SRAM is partitioned to minimize 
the energy- delay product. For S-CBF, we do not consider 
the delayand energy overhead of the shared counter since 

our goal is to demonstrate that L-CBF consumes less 
energy and is also faster. To further reduce energy for 
probes in S-CBF, we introduce an extra bit per entry which 
is updated only when the count changes from, or to, zero as 
described in Section II-B  
( Z-bits). On a probe, we only read this bit. Furthermore, 
we apply a number of delay and power optimizations on S-
CBF. In detail, we implement the divided word line (DWL) 
technique which adopts a two-stage hierarchical row 
decoder structure. The DWL technique improves speed and 
power. Moreover, we reduce power further via pulse 
operation techniques for the word-lines, the periphery 
circuits and the sense amplifiers. We also use multistage 
static CMOS decoding and current-mode read and write 
operations to further reduce power. For L-CBF, we utilize 
16-bit LFSRs such that the LFSR can count at least 
215values. 
 

TABLE II ENERGY, DELAY, AND AREA OF S-CBF 
AND L-CBF    IMPLEMENTATIONS FOR A 1 K-

ENTRY, 15-BIT CBF 

 
 
Table II shows the delay in picoseconds, the energy (static 
and dynamic) per operation in pico joules, and the area in 
square millimeters for both L-CBF and S-CBF. The last 
column reports the ratio of S-CBF over L-CBF per metric. 
The two rows per category report, respectively, 
measurements for the update and probe operations. As 
observed from Table II, L-CBF is 3.7 and 1.6 x faster than 
S-CBF during update and probe operations, respectively. In 
addition, L-CBF consumes 2.3 or 1.4x less energy than S-
CBFfor update and probe operations, respectively. These 
significant gains in speed and energy consumption come at 
the expense of more area. L-CBF requires about 3.2x more 
area than S-CBF. 
RTL Schematic 
RTL View is a Register Transfer Level graphical 
representation of the design. This representation (.ngr file 
produced by Xilinx Synthesis Technology (XST)) is 
generated by the synthesis tool at earlier stages of a 
synthesis process when technology mapping is not yet 
completed. The goal of this view is to be as close as 
possible to the original HDL code. In the RTL view, the 
design is represented in terms of macro blocks, such as 
adders, multipliers, and registers. Standard combinatorial 
logic is mapped onto logic gates, such as AND, NAND, 
and OR. 
1.TopPartition 
The top partition has five single bit inputs and an 8 bit 
input. It has eight single bit inputs and one 8 bit output. The 
8 bit input data is the address of the item to be 
added/deleted or checked from a list. The outputs depend 
on the count of the item. There are eight individual 
partitions described in the top partition. 
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Figure :Top Partition 

 
2. Hash function 
The hash function is used to enter/delete an item into/from 
a list. When an item is checked weather it is in a particular 
list the answer may be a false positive. The false 
positiveness will be reduced by hash function. The input 
data is 8 bit and it has 8 single bit outputs. 
 
3. Partitions 
The addresses of the item to be entered into the list or 
deleted from the list or searched weather it is in the list or 
not is decoded and given to the 8 individual partitions. The 
each partition has a single bit output. 
 
4. Gated clock 
 

 
Figure:Gated Clock 

 
The gated clock is an unit that has two inputs and output. 
One input is 4 bit input data and the other is the type of 
operation to be performed. 
 

SIMULATION RESULTS 
Simulation is a powerful and important tool because it 
provides a way in which alternative designs, plans and/or 
policies can be evaluated without having to experiment on 
a real system, which may be prohibitively costly, time 
consuming, or simply impractical to do.  
 
1. Generating Hash function 
The hash function is used to enter/delete an item into/from 
a list. When an item is checked weather it is in a particular 
list the answer may be a false positive. The false 
positiveness will be reduced by hash function. The input 
data is 8 bit and it has 8 single bit outputs. 
 

 
              Figure :Generating hash function 
 
2. Individual Partition 

 
Figure : Individual partition result 

 
The address of the item to be enter into the list or deleted 
from the list or searched weather it is in the list or not is 
decoded and given to the 8 individual partitions. The each 
partition has a single bit output. The output of the partition 
is either 1 or 0 based on whether the particular item is in 
the list or not. 
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3. LFSR Count 

 
The LFSR’s are used in up/down counters. When an item 
enters into a list its count increased by 1.if an item deleted 
from a set then the count will be decreased by 1. An LFSR 
is a shift register that, when clocked, advances the signal 
through the register from one bit to the next most-
significant bit . Some of the outputs are combined in 
exclusive OR configuration to form a feedback mechanism. 
A linear feedback shift register can be formed by 
performing exclusive OR on the outputs of two or more of 
the flip-flops together and feeding those outputs back into 
the input of one of the flip-flops. 
 

CONCLUSION 
In this thesis the investigation of physical level 
implementations of CBFs is done and proposed LCBF. 
LCBF is a novel implementation consisting of an array of 
up/down LFSRs and zero detectors. Compare LCBF with 
SCBF is made. SCBF is the previously assumed 
implementation consisting of an SRAM array of counts and 
a shared counter. LCBF is superior to SCBF in both delay 
and speed at the expense of more area. The proposed LCBF 
is a novel implementation consisting of an array of 
up/down LFSRs and zero detectors. It will test the 
membership of the set by Increment, Decrement and probe 
operations in LFSR .It will produce the single out “is zero“. 
Comparisons demonstrate that the estimations provided by 
the models are in satisfying agreement with the simulation 
results. 
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